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Abstract: In this paper, we deal with the problem of maintenance planning and production planning for a 
multiple-product manufacturing system. The manufacturing system under consideration consists of one 
machine which is subject to random failures and produces several products in order to satisfy some 
random demands. At any given time, the machine can only produce one type of product. The purpose of 
this study is to establish an economical production planning followed by an optimal maintenance 
strategy, taking into account the influence of production rate on the system degradation. Analytical 
models are developed in order to minimize sequentially the production/storage costs and the total 
maintenance cost. Finally, a numerical example is presented to illustrate the usefulness of the proposed 
approach.  

 

1. INTRODUCTION 

The joint maintenance and production policies for 
manufacturing system, which is subject to uncertainties such 
as machine failures, demand fluctuations, etc., has attracted 
the attention of several researchers. The development of 
industrial strategies (maintenance and production) has 
become very important for industrial companies in order to 
reduce their costs. In this context, Dehayem et al. (2011) 
developed a method to find the optimal production, 
replacement/repair and preventive maintenance policies for a 
degraded manufacturing system. Gharbi and kennŽ (2007) 
assumed that failure frequencies can be reduced through 
preventive maintenance, and developed joint production and 
preventive maintenance policies depending on produced part 
inventory levels. An analytical model and a numerical 
procedure which allow determining a joint optimal inventory 
control and an age based on preventive maintenance policy 
for a randomly failing production system was presented by 
Rezg et al. (2008). Several reviews have been published to 
summarize the development in this area; (Yao et al. 2005, 
Aghezzaf et al. 2007, and Dhouib et al. 2012). 

This paper examined a problem of the optimal production 
planning formulation of a manufacturing system consisting of 
one machine producing several products in order to meet 
several random demands. The stochastic nature of the system 
is due to the fact that demands are random and the machine is 
subject to random breakdowns. We consider that the finite 
production horizon is divided into sub-periods. At any given 
sub-period, the machine can only produce one type of 
product.  

This problem was studied by (KennŽ et al. 2003). They 
presented the analysis of the production control and 

corrective maintenance rate problem in a multiple-machine, 
multiple-product manufacturing system. They obtained a near 
optimal control policy of the system through numerical 
techniques by controlling both production and repair rates. 
Wei Feng et al. (2012) developed a multi -product 
manufacturing systems problem with sequence dependent 
setup times and finite buffers under seven scheduling 
policies. Sloan and Shanthikumar (2000) presented a Markov 
decision process model that simultaneously determines 
maintenance and production schedules for a multiple-product, 
single-machine production system, accounting for the fact 
that equipment condition can affect the yield of different 
product types differently. Filho (2005) developed a stochastic 
dynamic optimization model to solve a multi-product, multi-
period production planning problem with constraints on 
decision variables and finite planning horizon. Many works 
was developed in the same context, (Kumru, 2011 and Kazaz 
and Sloan, 2013). 

The considered equipment is subject to random failures. The 
failure rate increases with time and according to the 
production rate. The machine undergoes a preventive 
maintenance policy in order to reduce the occurrence of 
failures. In the literature, the influence of the production rate 
on the materiel degradation is rarely studied. In this study, we 
take into consideration this influence in order to establish the 
optimal maintenance strategy.  

Based on the works of Hajej et al. (2009, 2010, 2011), the 
objective of this study is to determine an economical 
production plan followed by an optimal maintenance 
strategy. Firstly, for a given randomly demand, we 
established an optimal production plan which minimizes the 
average total storage and production costs. Secondly, using 
the optimal production plan obtained and its influence on the 



 
 

  

 

manufacturing system failure rate, we established an optimal 
maintenance scheduling which minimizes the maintenance 
total cost. 

This paper is organized as follows: In section 3, we develop 
the production policy. The maintenance strategy is stated in 
section 4. A numerical example is presented in section 5. 
Finally, the conclusion is given in section 6. 

2. NOTATIONS 

Cpi The unit production cost of product i 
Csi The unit holding cost of product i during Δt 
sti The Setup cost of product i 
Mc Cost of corrective maintenance  
Mp Cost of preventive maintenance  
Uimax Maximal  production rate of product i during Δt 
H The total number of production periods 
n The total number of products 
p The total number of sub-periods  
∆t Length of periods 
○(.) Length of the sub-period  

di,k Demand of product i in period k 
σ(di,k) Standard deviation of demand of product i at 

period k 
θi Probabilistic index (related to customer 

satisfaction) of product i 
Si,(.) Stock level of product i at the end of the sub-

period  
Z (.) The total expected cost of production and 

inventory over the finite horizon H.Δt 
ψ(.) The total cost of maintenance 

λ.(.)  Failure rate function  

λn(.)  Nominal failure rate 

ω(.) The average number of failures 
T Intervention period for preventive maintenance 

actions 
Ui,j,k Production rate of product i in sub-period j of 

the period k 
yi,j,k A binary variable equal to 1 if the product i is 

produced in sub-period j of the period k, and 0 
otherwise 

up Unit produced 
mu Monetary unit 

3. PRODUCTION POLICY 

3.1Problem formulation 

The aim of this section is to develop an analytical model that 
allows us to determine the optimal production plan U*, 

{ } { } { }( )*
, ,

* 1... , 1... , 1...i j kU U i n j p k H= ∀ = = =
 , 

consequently, to determine the quantity and the type of 
products to produce in each sub-period. We recall that n 
represents the total number of products, p the number of sub-
period and H the total number of production periods. Figure 
below shows an example of a production plan. 

 

Fig.1. Repartition of the production plan 

To develop this section, the following assumptions are 
specifically made: 

o The setup time is negligible;  

o Holding and production costs of each product are 
known and constant; 

o Only a single product can be produced in each sub-
period;  

o The standard deviation of demands σ(di,k) and the 

average demand ̂id mean for each product i and each 
period k are known and constant. These two data 
allow us to obtain di,k , the demand of each product in 
each period.  

In this study, we assume that the horizon is divided into H 
equal periods and each period is divided into p sub-periods 
with different lengths. We consider that p = n (the total 
number of products). “Fig. 1” shows the distribution of the 
production plan for the finite horizonH t⋅ Δ . At any given 
sub-period, the machine can only produce one type of 
product. The demand of each product i, { i=1É n} is satisfied 
at the end of each period k, { k=1É H}.  
 
The mathematical formulation of the proposed problem is 
based on the extension of the model described by Hajej et al. 
(2011), for the one product case study.  
 
Formally, the stochastic production problem is defined as 
follows: 

( )( ){ }2MinE UΖ  
{ } { } { }, j,k 1... , 1... , 1...iU U i n j p k H= ∀ = = =  

With: 

( )
( ), , , ,

( ) ( )
1 1 1 ,( ) ( )

i j k i i i j kpH n

k p p j
k j i i i k p p j

y st Cp U
U

Cs S
t

δ ⋅ − −
= = = ⋅ − −

⎡ ⋅ + ⋅ ⎤
⎢ ⎥Ζ = ⎢ ⎥
+ ⋅ ⋅⎢ ⎥Δ⎣ ⎦

∑∑∑       (1)
 

Where: E { . } : The mathematical expectation 

Under the following constraints: 

,( ) ( ) ,( ) ( ) 1 , , , , ,i k p p j i k p p j i j k i j k i k
jS S y U Int d
p⋅ − − ⋅ − − −

⎡ ⎤= + ⋅ − ⋅⎢ ⎥
⎣ ⎦  

                { } { } { }1... , 1... , 1...i n j p k H∀ = = =                     (2)                                    

 
Where [ ]Int ⋅ : Integer part  
 

( ) { } { },( ) 0 1... , 1...i k p iProb S i n k Hθ⋅ > ≥ ∀ = =                (3)                  



 
 

  

 

( ) ( ) { } { } { }, ,0   1 , 1 , 1
Δ

k p p j
i j k imaxU U i n j p k H

t

δ × − −
≤ ≤ × ∀ = … = … = …  (4) 

( ) ( ) { }
1

!          1
p

k p p j
j

t k Hδ × − −
=

= ∀ = …∑                          (5) 

The first constraint denotes the inventory balance equation 
for each product i, { i=1É n}  during each period k, { k=1É H} . 
The equation (3) refers to the satisfaction level of demand of 
product i in each period k. The constraint (4) defines the 
upper production rate of the machine for each product i. The 
aim of (5) is to divide each period into p different sub-
periods.  

Constraints below should also be taken into account: 

{ } { }, ,
1

1         1   1
n

i j k
i

y j p For k H
=

= ! = É = É"                      (6) 

{ } { }, ,
1

1       1   1   
p

i j k
j

y i n For k H
=

= ∀ = … = …∑                       (7) 

{ } { } { } { }, ,  0,1         1 , 1 , 1i j ky i n j p k H∀ = … = … = …Ú           (8) 

The equations (6) and (7) mention that only one product i can 
be produced in sub-period j of period k. The constraint (8) 
states that , ,i j ky is a binary variable. We note that , ,i j ky  equal 

to 1 if the product i is produced in sub-period j of the period 
k, and 0 otherwise.  

3.2 The deterministic production model 

We admit that the function 

( ) { } { } { }i, j,k   1 , 1  , 1f i n j p k H! = É = É = É  represents the 

cost of storage and production which is relative to the 
proposed plan and E{.} denotes the value of the mathematical 
expectation. The quantity stocked of product i at the end of 
the sub-period j of period k is denoted ( ) ( ), i k p p jS ! " " . The 

production rate required to satisfy the demand of product i at 
the end of period k is , ,i j kU , where j is the sub-period during 

which the product i is produced. 
Thus, the problem formulation can be presented as following: 
 

 ( )2*
( , , ) , , ,( . ) ( )

1 1 1

,
pH n

i j k i j k i k p p j
k j i

U Min E f U S ! !
= = =

" #$ %& &' (= ) *
' (& &+ ,- .

///   (9)    

So our problem is to determine the decision 

variables( ), , ( . ), ( ), , andi j k k pi j pk jU y ! " " , required to satisfy 

economically the various demands under the constraints seen 
in the previous paragraph. 

• The inventory balance equation 
The stochastic inventory balance equation is: 

,( ) ( ) ,( ) ( ) 1 , , , , ,i k p p j i k p p j i j k i j k i k
jS S y U Int d
p⋅ − − ⋅ − − −

⎡ ⎤= + ⋅ − ⋅⎢ ⎥
⎣ ⎦

                                  

We suppose that the mean and variance of demand are known 
and constant for each product i in each period k.  

{ }, ,
ö
ii k kE dd = and { } ( ),

2
, i ki k dVar d σ=  { } { }1... , 1...i n k H∀ = =  

{ },i kVar d  is the demand variance of product i at period k. 

The inventory variable ( ) ( ),i k p p jS ! " "  
 is statistically described 

by its mean: 

( ) ( ){ } ( ) ( ) { } { } { }, ,    1 , 1 1ö ,i k p p j i k p p jSE S i n j p k H! " " ! " "= # = É = É = É
We note that { }, , , , , ,

ö
i j k i j k i j kUE U U= =

 
because , ,i j kU

 
is 

constant for each interval( ) ( )k p p jδ × − −  
. 

Then, the balance equation (2) can be converted into an 
equivalent inventory balance equation: 

,( ) ( ) ,( ) ( ) 1 , , , , ,
öö ö

i k p p j i k p p j i j k i j k i k
j

S S y U Int d
p! " " ! " " "

# $= + ! " !% &
' (

 

        
{ } { } { }1... , 1... , 1...i n j p k H! = = =

                           (10) 

• The service level constraint: 

The second step for transformed our problem into 
deterministic equivalent formulation is to transform the 
service level constraint into deterministic equivalent 
constraint by specifying certain minimum cumulative 
production quantities that depend on the service level 
requirements.  
 
Lemma 1: 

( ) ( ) ( ) ( )
1

, , , , , , , 1
1

ˆ ˆ
p

i j k i j k i k i i k i k p
j

y U Var Sdd ϕ θ−
− ×

=

× ≥ × + −∑                

{ } { } { }1... , 1... , 1...i n j p k H! = = =  
With: 

( )i! " : Cumulative Gaussian distribution function 

( )1
iϕ θ− : Inverse distribution function 

 Proof: (Contact author) 

• The expected total cost of production: 

In this step, we proceed to a simplification of the expected 
cost of production and storage. Then, the expression of the 
expected total cost of production is represented as following: 
 
Lemma 2: 
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• In summary: 

The deterministic optimization problem becomes: 

Objective function: 
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Under the constraints bellow: 

Ø ,( ) ( ) ,( ) ( ) 1 , , , , ,
öö ö
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4. MAINTENANCE STRATEGY 

4.1 Description 

The aim of this strategy is to define the sub-periods of 
production that must be followed by preventive maintenance 
actions. Maintenance strategy adopted in this study is known 
as preventive maintenance with minimal repair. These 
preventive actions are put into practice in the period i×T (i = 
1,2...). The replacement rule for this policy is to replace the 
system with a new system at each i ! T. If the system fails 
between preventive maintenance actions, only minimal repair 
is implemented.  

 
In this study, we assume that: 

Ø Maintenance actions have negligible durations; 

Ø In the case of preventive maintenance, the system 
becomes as good as new; 

Ø Mp and Mc costs incurred by the preventive and 
corrective maintenance actions are known and 
constant, with Mc>>Mp. 

Generally, if λ (t) is the function of machine failure rate, the 
total maintenance cost per unit time is expressed as 
following: 

( )

( )
0

T
p c

T

M M t dt

T

λ
ψ

+ ×
=

∫
                                        (11)

 

 
The aim of this maintenance strategy is to find the optimal 
period of preventive maintenance actions T* minimizing the 

total cost per unit time over a given horizon  
 
The existence of an optimal preventive maintenance period 
T*, is proved in the literature. (Lyonnet, 2000) proved that T* 
exists if the failure rate is increasing. 
 
In this section we will optimize the maintenance strategy 
adopted which is a preventive maintenance with minimal 
repair. From the production plan developed during the time 
horizonH t! " , we determine the optimal number of sub-

periods ( ) ( )( )*k p p j! " " , after which the preventive 

maintenance should be performed. We note that if 

( ) ( )( )*k p p j! " "  exceedsH t! " , no preventive 

maintenance action is implemented. 

4.2 Failure rate expression  

Before determining the analytical model minimizing the total 
cost of maintenance, we need first, to develop the expression 

of the failure rate ( ) ( ) ( )k p p j tλ × − − . Then, the average number 

of failures expression( ),ω T U , during the finite horizonH t! " . 
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( ) ( ) { } { }   0,    1   1k p p jt k H j pδ × − −
⎡ ⎤∀ ∀ = … = …⎣ ⎦Ú              (12) 

 
After simplifying, the failure rate expression becomes: 
 
Lemma 3: 
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Proof: contact the author 



 
 

  

 

4.3 The expression of average number of failures: 

Generally the average number of failures in the case of 
maintenance with minimal repair is expressed during a 
defined period and under operating conditions assumed to be 
constant over time. Under these assumptions, the average 
number of failures for a period T is expressed by the relation 
bellow: 

( ) ( )
0

,
T

T U t dtϕ λ= ∫                                                         (13)                                    

The intervention period of our model is defined by: 

( ) ( ) ( ) ( )

1

1 1 1
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Q l l

T
!

" ! ! " ! !
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= +## #! !
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Thus, 
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Hence the number of failures during the interval [ ]0,T  is 

expressed as following: 
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Using the failure rate expression, the average number of 
failures can be presented as follows: 

Lemma 4: 
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We recall that ( )n tλ  is the nominal rate of failures and the 

failure rate ( )( ) ( )k p p j tλ ⋅ − −  depends on the production rate 

, ,i j kU { } { } { }1... , ... , 1...i n j p k H∀ = = = . 

The decision variables sought in this policy are: the period k* 
and the sub-period j*, after which we must intervene for a 
preventive maintenance action. These variables allow us to 

determine the optimal period of preventive maintenance T. TÕs 
formulation is represented in (14). 

So our objective function is: 

( )* *

( , )
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1 1 1
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T U
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Min k j

Mp Mc
Min

µ µ
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               (16)
 

 

5. NUMERICAL EXAMPLE 

Let us consider a system that produces three products to meet 
the random demands below. Using the models described in 
previous sections, we will determine the optimal production 
plan. We will determine then the optimal number of 
preventive maintenance minimizing the total cost of 
maintenance over a finite planning horizon: H=9 trimesters. 
We consider that the length of periods Δt = 3 months. We 
supposed that the standard deviation of demand of product i, 
is the same for all periods, (σ(di,k)= σ(di,k+1)= σ(di)). The data 
required to run this model are given in sequence. 
 

• The data relating to production: 
 

The mean demands:  

1 1 2 2 3 3
ˆ ˆ ˆ200, ( ) 12 , 100, ( ) 7 ,and 300, ( ) 15d d d d d dσ σ σ= = = = = =

 
 di,1 di,2 di,3 di,4 di,5 di,6 di,7 di,8 di,9 
i=1 210 189 217 194 210 175 208 197 199 
i=2 102 90 93 100 101 99 95 97 99 
i=3 315 310 292 288 280 302 330 325 310 

The other data are presented as following: 

 Si,0 Ui,max Cpi Csi Sti Өi 
i=1 30 450 15 4 65 92 
i=2 100 330 22 7 80 87 
i=3 80 620 10 3 75 90 
 

• The data relating to system reliability: 
 
System reliability, costs and times related to maintenance 
actions are defined by the following data: 
 

o The law of failure characterizing the nominal 
conditions is Weibull. It is defined by: 

- Scale parameter (")  : 20 
- Shape parameter (#) : 2   
- Position parameter (𝜸) :0 

 
o The initial failure rate: 0 0λ =  

These parameters provide information on the evolution of 
the failure rate in time. 
This failure rate is increasing and linear over time. Thus the 
function of the nominal failure rate is expressed by: 



 
 

  

 

( )
1 2
20 20n

t tt
α

α
λ

β β

−
⎛ ⎞ ⎛ ⎞= × = ×⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

• The obtained production plan: 

 Period 1 Period 2 Period 3 
 ○1 ○2 ○3 ○4 ○5 ○6 ○7 ○8 ○9 
 0.23 1.09 1.62 1.33 0.11 1.56 1 1.28 0.72 
P1  0 0 272 223 0 0 0 190 0 
P2  98 0 0 0 0 188 0 0 110 
P3  0 357 0 0 211 0 327 0 0 
 Period 4 Period 5 Period 6 
 ○10 ○11 ○12 ○13 ○14 ○15 ○16 ○17 ○18 
 0.23 1.09 1.62 1.2 1.27 0.71 0.27 1 1.63 
P1  0 241 0 0 0 190 0 0 283 

P2  0 0 194 175 0 0 0 134 0 
P3  213 0 0 0 396 0 292 0 0 

 Period 7 Period 8 Period 9 
 ○19 ○20 ○21 ○22 ○23 ○24 ○25 ○26 ○27 
 1.33 1.11 0.56 1.62 1.33 0.11 1.56 1 0.28 
P1  0 269 0 0 201 0 0 129 0 
P2  159 0 0 125 0 0 0 0 107 
P3  0 0 258 0 0 93 249 0 0 

 
• The obtained maintenance strategy: 
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Fig. 2. The total cost of maintenance depending to sub-
periods. 

 
The preventive 
maintenance cost (mu) 
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The optimal period of 
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To illustrate the robustness of the proposed approach, we 
made a sensitivity study on the preventive maintenance cost 
Mp. The corrective maintenance cost Mc is fixed at 2500 mu, 
then we change the preventive maintenance cost value. We 
deduce that if we increase Mp, the intervention period of 
preventive maintenance T increases too.   

6. CONCLUSION 

In this paper we considered a manufacturing system 
composed in one machine which produces several products in 
order to meet several random demands. The machine is 
subject to random failures, then, preventive maintenance 
actions are considered in order to improve its reliability. At 

failure, a minimal repair is carried out to restore the system 
into the operating state without changing its failure rate.  

ItÕs noted that the use of the optimal production plan in the 
maintenance cost formulation is justified by the significant the 
influence of the production plan on the system deterioration.  

The primary objective of the study was to determine the 
optimal production rates and when to perform the preventive 
maintenance. Firstly, we have formulated a stochastic 
production problem in order to obtain an optimal production 
plan. Secondly, using the optimal production plan in the 
maintenance problem formulation, we established an optimal 
maintenance scheduling.  
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